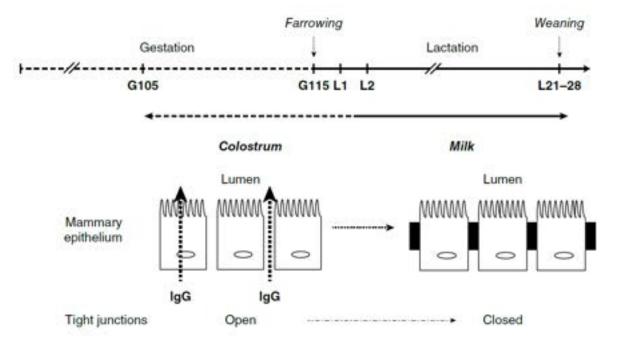
HIPRA

Monitoring colostrum uptake MDA Transfer Test

Isaac Ballarà / David LLopart


isaac.ballara@hipra.com

The importance of colostrum

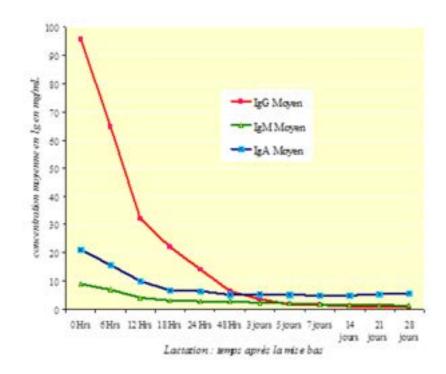
3 main functions

- Source of energy and nutrients
- Source of both Passive and Celular immunity
- Growth factors that estimulate intestinal closure
 and maturation

Colostrum production and absorption

Source of energy and immune protection

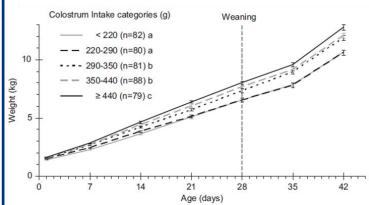
HIPRA


	Colostrum						
	Early	mid	late	Transie	ent milk	Mature milk	
Time postpartum	0 h	12 h	24 h	36 h	72 h	17 day	s.e.m.
Chemical composition (g/100 g) ¹						
Fat	5.1	5.3 ^c	6.9 ^{bc}	9.1ª	9.8 ^a	8.2 ^b	0.5
Protein	17.7ª	12.2 ^b	8.6°	7.3 ^{cd}	6.1 ^d	4.7 ^e	0.5
Lactose	3.5 ^d	4.0 ^c	4.4 ^{bc}	4.6 ^b	4.8 ^{ab}	5.1ª	0.1
Dry matter	27.3ª	22.4 ^b	20.6 ^b	21.4 ^b	21.2 ^b	18.9 ^c	0.6
Energy (kJ/100 g) ²	260 ^d	276 ^d	346 ^c	435 ^{ab}	468ª	409 ^b	21

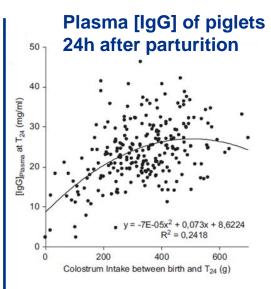
	Early colostrum	Mature milk	
IgG (total) (mg/ml)	61.8	1.6	
IgA (mg/ml)	11.3	4.1	
IgM (mg/ml)	3.8	1.5	

Source: Adapted from Theil et al. (2014a)

Colostrum production and absorption


HIPRA

Influence of colostrum intake during the first 24h


Mortality rate until weaning 70 n а 60 50 Mortality rate, % 40 30 20 10 0 0-100-200-300-400 100 200 300 400 500 500 Colostrum intake, g

Mortality rate was as low as 7.1% when piglets ingested >200 g and increased to 43.4% when intake was <200 g

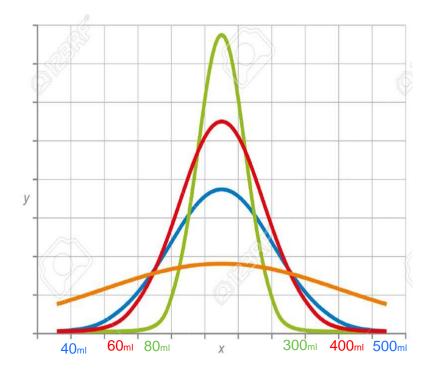
Piglet growth from 1 to 42 days of age

Colostrum intake has **long-term effects** on piglets' growth from 3 weeks of age **until after weaning**

Plasma **[IgG] reaches** a **plateau** when colostrum intake increases **beyond 200-250 g**

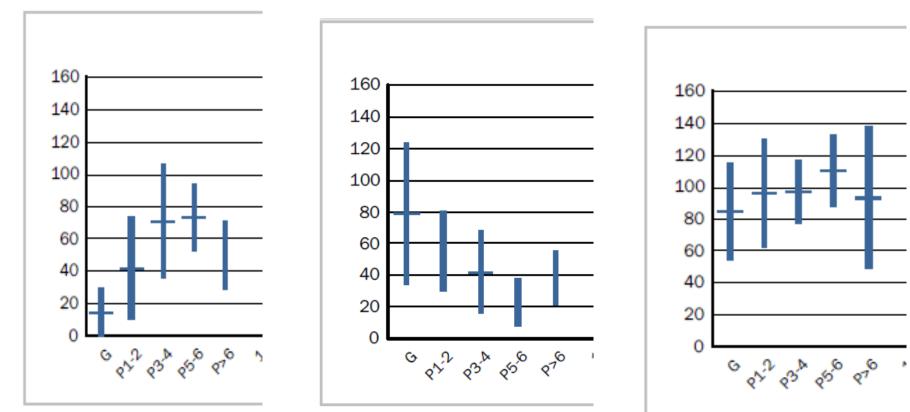
¿How much colostrum (Kg) can a sow produces?

Mean: 2,5 – 3,5 kg 1,1 kg to 4,7 kg (Foisnet *et al.*, 2010)



- Recommended intake is 200-250 g/piglet
- **Hiperprolificity:** Difficult to reach the recommended quantity in all the piglets

Piglet subpopulations will always exist



What generates colostrum subpopulations ?

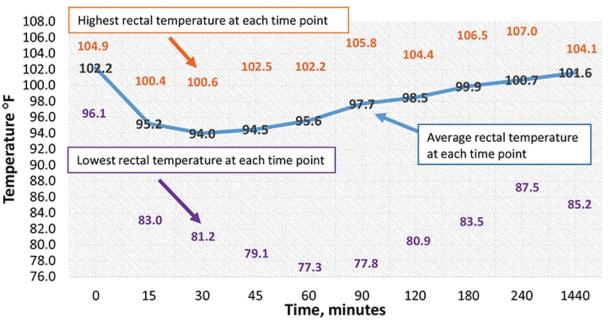
- Sow age & adaptation protocol for gilts
- o Body weight at birth
- **Problems** (with the sow / with the piglet)
- **Mis-management** (split suckling / feeding)

The importance of the sow age


HIPRA

HIPRA

	Туре	Methodology	Bibliography	
HIPRA		Termography	https://www.nationalhogfarmer.com/animal-health/measuring-post-natal- changes-piglet-body-temperature	
	Qualitative		Devillers et al., 2004. Estimation of colostrum intake in the neonatal pig	
		Body weight	Devillers et al., 2011. Influence of colostrum intake in piglet survival and immunity	


Thermography

HIPRA

Sow body temperature 38.3 – 38.9°C

Piglet body temperature

0h - 39°C 45 min - 34,7°C 24h – 38,6°C

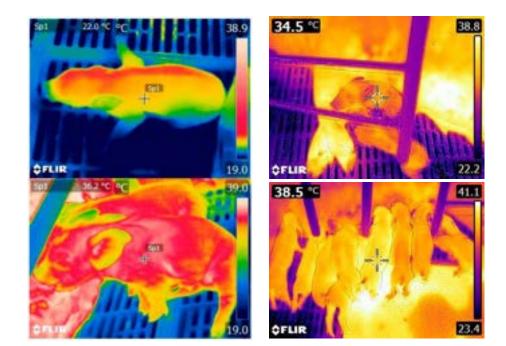
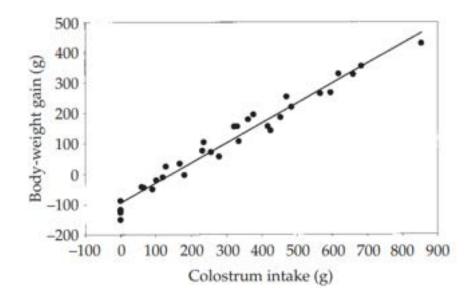

Source: National Hog Farmer

Figure 1: Change in rectal temperature over 24 hours after birth

Thermography

If the piglet does not take enough colostrum, there is a decrease in body temperature between 2.5°C - 4°C.

HIPRA

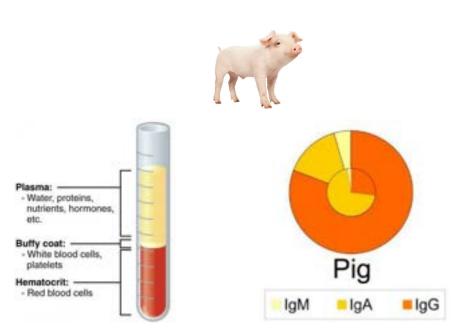

Measuring colostrum intake

Body weight

80% of the colostrum is taken within the first 8h of life

Colostrum intake = BW^{24h} – BW farrowing

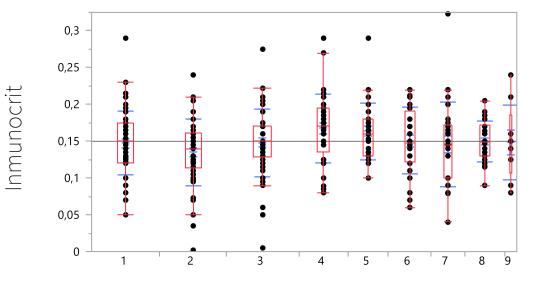
It does not take into consideration the evaporative lose of water.


	Туре	Methodology	Bibliography				
HIPRA	Qualitative	Termography	https://www.nationalhogfarmer.com/animal-health/measuring-post-natal- changes-piglet-body-temperature				
		Body weight	Devillers et al., 2004. Estimation of colostrum intake in the neonatal pig				
			Devillers et al., 2011. Influence of colostrum intake in piglet survival and immunity				
		Inmunocrit	Peters B. M., 2015. Reference values for immunocrit ratios to assess maternal antibody uptake in 1-day-old piglets				
	Quantitative		Vallet J. L., 2015. Relationships between day one piglet serum immunoglobulin immunocrit and subsequent growth, puberty attainment, litter size, and lactation performance				
			Sánchez-Matamoros A. et al., 2019. Immunocrit assay is a tool to evaluate the management of maternally derived immunity in sow farms				

Inmunocrit

HIPRA

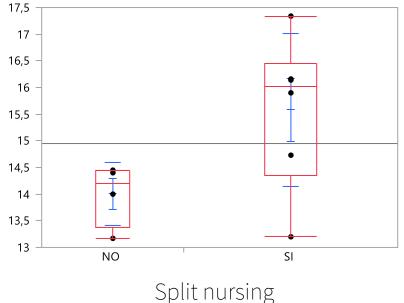
Method that allows to quantify the amount of protein in serum by means of its precipitation.


Colostrum is composed by 17% of protein, basically immunoglobulins like IgA and IgG.

Source: Hurley et al. 2011

Inmunocrit at individual piglet level

HIPRA



Source: Maternally derived immunity in pigs. Exploring its management through the immunocrit assay. Sánchez-Matamoros et al 2018

Inmunocrit at litter level

HIPRA

Source: Internal data (HIPRA)

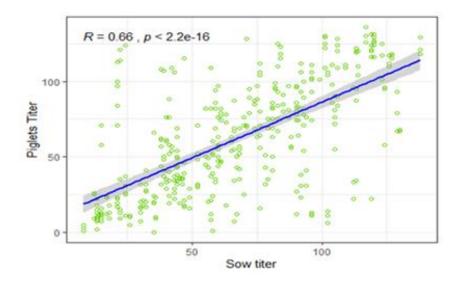
 https://www.nationalhogfarmer.com/animal-health/measuring-post-natal-changes-piglet-body-temperature Devillers et al., 2004. Estimation of colostrum intake in the neonatal pig Devillers et al., 2011. Influence of colostrum intake in piglet survival and immunity Peters B. M., 2015. Reference values for immunocrit ratios to assess maternal antibody uptake in 1-day-old piglets Vallet J. L., 2015. Relationships between day one piglet serum immunoglobulin immunocrit and subsequent growth, puberty attainment. 			
Devillers et al., 2004. Estimation of colostrum intake in the neonatal pig			
Devillers et al., 2011. Influence of colostrum intake in piglet survival and immunity			
Peters B. M., 2015. Reference values for immunocrit ratios to assess maternal antibody uptake in 1-day-old piglets			
Vallet J. L., 2015. Relationships between day one piglet serum immunoglobulin immunocrit and subsequent growth, puberty attainment, litter size, and lactation performance			
Sánchez-Matamoros A. et al., 2019. Immunocrit assay is a tool to evaluate the management of maternally derived immunity in sow farms			
 changes-piglet-body-temperature Devillers et al., 2004. Estimation of colostrum intake in the neonatal pig Devillers et al., 2011. Influence of colostrum intake in piglet survival and immunity Peters B. M., 2015. Reference values for immunocrit ratios to assess maternal antibody uptake in 1-day-old piglets Vallet J. L., 2015. Relationships between day one piglet serum immunoglobulin immunocrit and subsequent growth, puberty attainment, litter size, and lactation performance Sánchez-Matamoros A. et al., 2019. Immunocrit assay is a tool to 			
 https://www.nationalhogfarmer.com/animal-health/measuring-post-natal-changes-piglet-body-temperature Devillers et al., 2004. Estimation of colostrum intake in the neonatal pig Devillers et al., 2011. Influence of colostrum intake in piglet survival and immunity Peters B. M., 2015. Reference values for immunocrit ratios to assess maternal antibody uptake in 1-day-old piglets Vallet J. L., 2015. Relationships between day one piglet serum immunoglobulin immunocrit and subsequent growth, puberty attainment, litter size, and lactation performance Sánchez-Matamoros A. et al., 2019. Immunocrit assay is a tool to evaluate the management of maternally derived immunity in sow farms Benneman P. E, 2021. Performance of piglets according to colostrum intake and serum immunoglobulin concentration determined by the immunocrit method Schoos A. et al., 2021. Evaluation of the agreement between Brix refractometry and serum immunoglobulin concentration in neonatal 			

Refractometry

Evaluation of the agreement between Brix refractometry and serum immunoglobulin concentration in neonatal piglets

A. Schoos^{a,*}, W. De Spiegelaere^b, A. Cools^d, B. Pardon^c, E. Van Audenhove^a, E. Bernaerdt^a, G.P.J. Janssens^d, D. Maes^a

* Department of Reproduction, Obsteinics and Hend Health, Unit of Porcine Health Management, Paculty of Veterinary Medicine, Chent University, Saltburykan 133, SI20 MmtDoke, Belghum ¹⁰ Department of Dependengy, Faculty of Veterinary Medicine, Chent University, Saltburykan 133, SI20 Mendbele, Belghum ¹¹ Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Chent University, Saltburykan 133, SI20 Mendbele, Belghum ¹¹ Department of Navition, Genetics and Elefology, Faculty of Veterinary Medicine, Chent University, Neidenmat 19, SI20 Mendbele, Belghum


- Measures total solid percentage in a solution (Ig represent >50% of total protein in neonatal piglet serum)
- Suggested Brix cut-off values can help to evaluate if there is a lack of antibodies in piglets during a herd visit
- Commonly used in calves and foals

	Туре	Methodology	Bibliography		
HIPRA	Qualitative	Termography	https://www.nationalhogfarmer.com/animal-health/measuring-post-natal- changes-piglet-body-temperature		
		Body weight	Devillers et al., 2004. Estimation of colostrum intake in the neonatal pig		
			Devillers et al., 2011. Influence of colostrum intake in piglet survival and immunity		
		Immunocrit	Peters B. M., 2015. Reference values for immunocrit ratios to assess maternal antibody uptake in 1-day-old piglets		
	Quantitative		Vallet J. L., 2015. Relationships between day one piglet serum immunoglobulin immunocrit and subsequent growth, puberty attainment, litter size, and lactation performance		
			Sánchez-Matamoros A. et al., 2019. Immunocrit assay is a tool to evaluate the management of maternally derived immunity in sow farms		
			 https://www.nationalhogfarmer.com/animal-health/measuring-post-natal-changes-piglet-body-temperature Devillers et al., 2004. Estimation of colostrum intake in the neonatal pig Devillers et al., 2011. Influence of colostrum intake in piglet survival and immunity Peters B. M., 2015. Reference values for immunocrit ratios to assess maternal antibody uptake in 1-day-old piglets Vallet J. L., 2015. Relationships between day one piglet serum immunoglobulin immunocrit and subsequent growth, puberty attainment, litter size, and lactation performance Sánchez-Matamoros A. et al., 2019. Immunocrit assay is a tool to 		
		Brix grades			
		ELISA			

ELISA Test

HIPRA

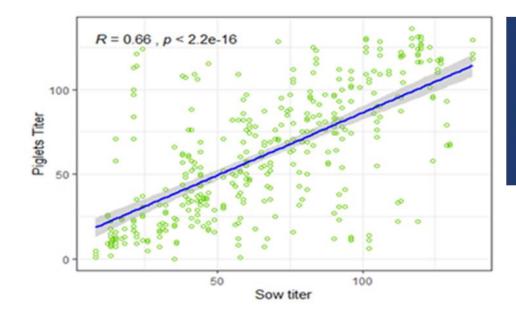
Take blood samples from the sow and the piglet after inducing a immune response against a specific disease.

Strengths and weaknesses

	CUALIT	ATIVE	QUANTITATIVE			
	Termography	Body Weight	Immunocrite Brix		ELISA	
Especificity	Low	Low	Medium	Medium	High	
Cost	Medium	Low	Low	Low	Medium	
Labour	Low	High	Medium	Medium	Medium	

MDA TRANSFERTEST

٠


ELISA Swine Erysipelas

- 100% sows get vaccinated against Swine Erysipelas
- Swine Erysipelas vaccination induce an antibody response which is mesurable by ELISA
- CIVTEST Suis SE/MR
 - Is robust: consistent results when repeating the test
 - Allows to quantify the amount of antibodies
- There is a <u>direct corelation</u> between antibody level of the sow and the ones transfered to their offspring via colostrum

To assess the correct transfer of immunity from mother to piglet

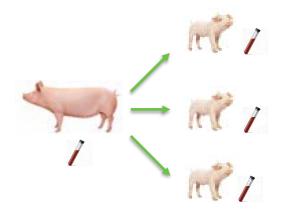
The Reference in Prevention for Animal Health

STUDY OF THE CORRELATION BETWEEN THE SEROLOGY FOR SWINE ERYSIPELAS IN THE SOW AND HER OFFSPRING

De Cleer¹, J.; Nodar², L.; Llopart², D.; Ballarà², I.; Jordà², R. ¹HIPRA FRANCE (Orvault), France; ²HIPRA, Amer (Girona), Spain

Sow - piglet antibody titer corelation

Sow titre	Piglet titre
100	≈ 90 - 110
65	≈ 55 - 75
40	≈ 30 - 50
25	≈ 20 - 30

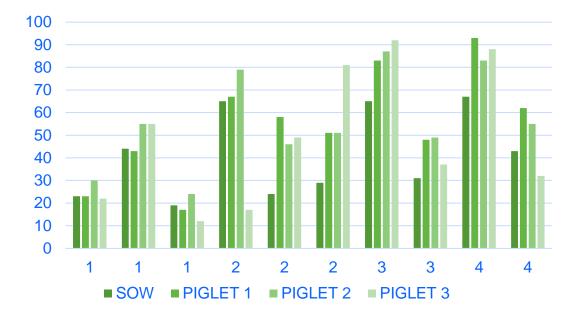


Step 1: select and mark 4 midle size piglets/sows at the date of farrowing

Farm size (sows)	Sampling (sows)
< 500	10
500 - 800	15
800 – 1,000	20
1,000 - 2,000	25

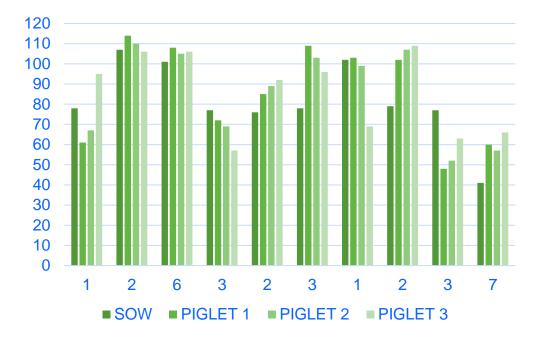
Step 2: collect blood samples from each sow and its piglets (n=3) at day 7 after farrowing

MDA

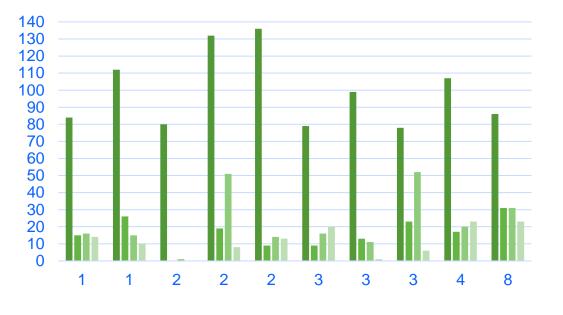


What do we expect in case of good colostrum intake?

Sow N° - Parity	Sow titre	Piglet 1	Piglet 2	Piglet 3
1890 - 1°	59	71	56	56
611 - 3°	41	59	59	50
643 - 3°	30	46	71	46
130 - 4°	52	73	69	75
9391 - 5°	51	38	30	35
9388 - 5°	36	52	1	46
9360 - 5°	72	91	115	78
8949 - 6°	56	48	68	72

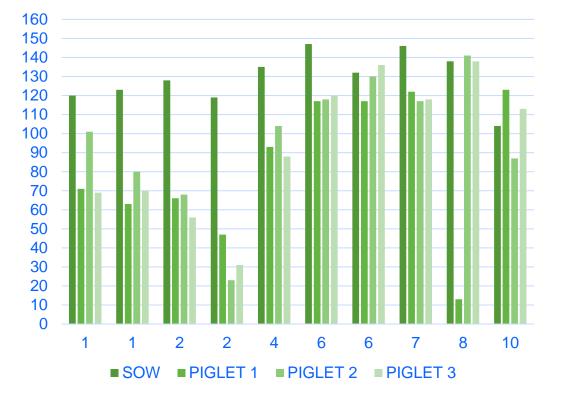


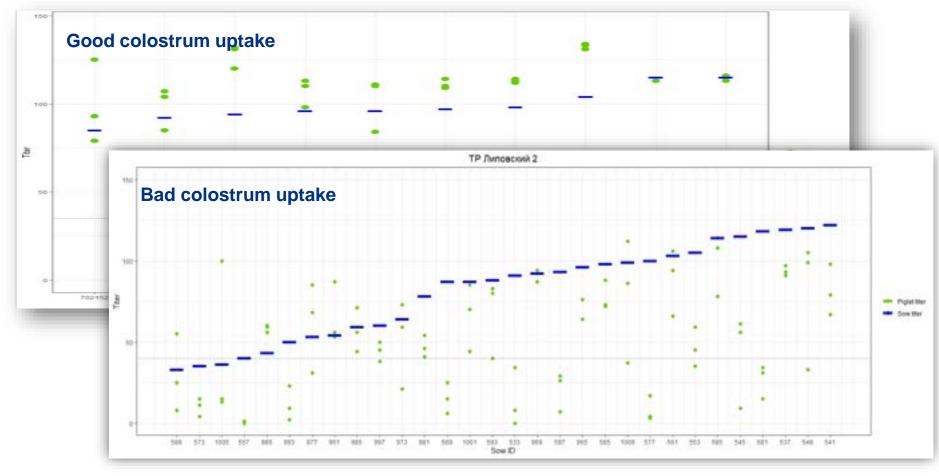
France: 250 sow farm Farrow to Finish; Weaning at 21 days; Vaccination : ALUMINIUM HYDROXIDE vaccine at 15 <u>after farrowing</u>; Sampling: <u>7 days</u> of age

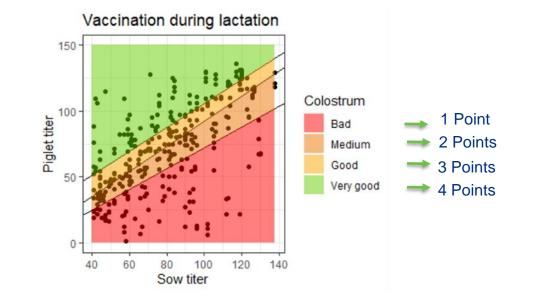


France: 250 sows / weaning at 21 days Vaccination : Special adjuvant (vaccine 1) at 2 weeks **before farrowing** Sampling: **<u>8 days</u>** of age

SOW PIGLET 1 PIGLET 2 PIGLET 3

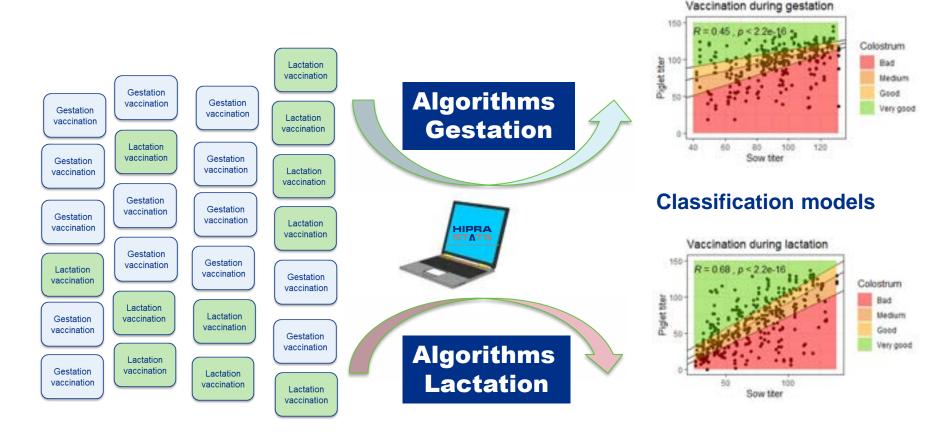

Spain: 2500 sows, weaning at 24 days Vaccination: Special adjuvant (vaccine 1) at 21 days <u>after farrowing</u> Sampling: <u>7 days</u> of age


Belgium: Farm 440 sows, weaning at 24 days Vaccination: Special adjuvant (vaccine 2) at 10 days <u>after farrowing</u> Sampling: <u>7 days</u> of age

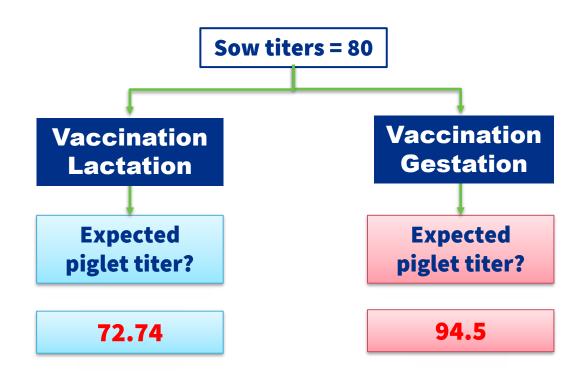


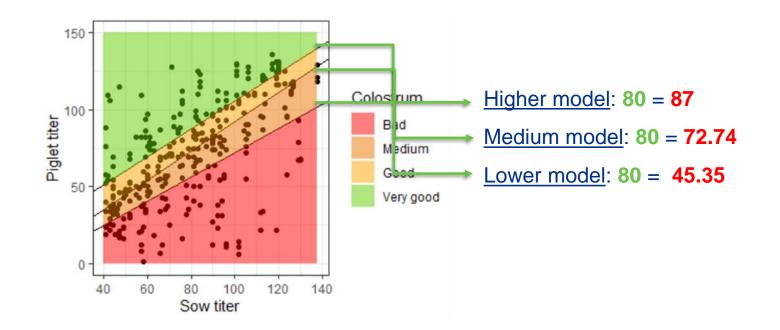
France: FF 140 sows, weaning at 21 days Vaccination: Special adjuvant (vaccine 1) at 15 days <u>after farrowing</u> Sampling: at <u>7 days</u> of age HIPRA

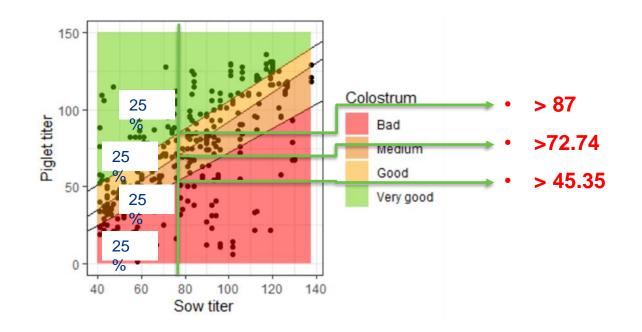
TRANSFERTEST

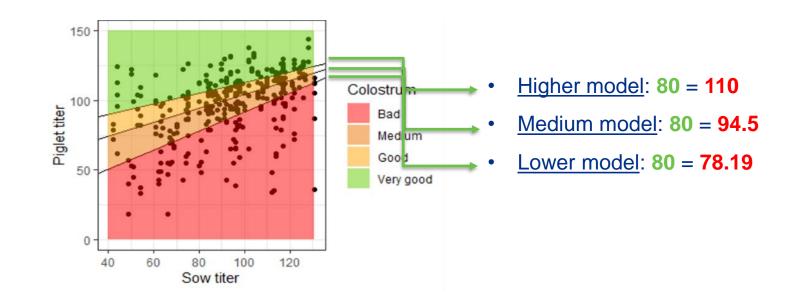


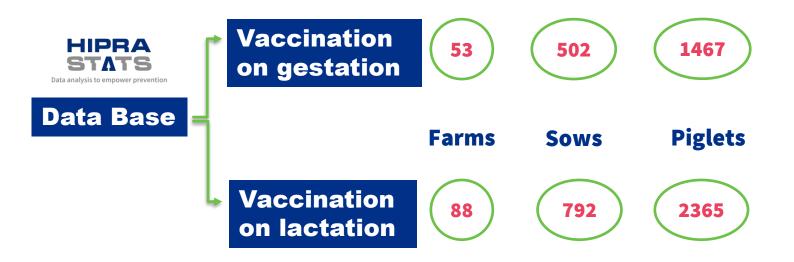
 $Farm Scoring(\%) = \frac{\sum Points \ 30 \ piglets}{120} \times 100$





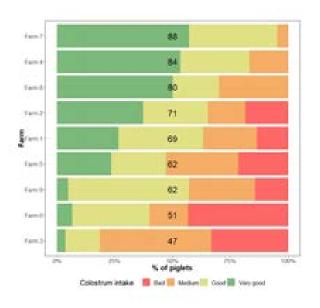

Vaccination Lactation

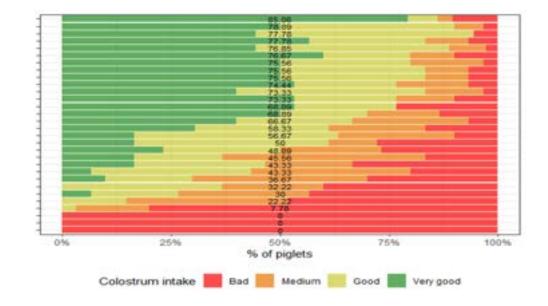

Vaccination Lactation



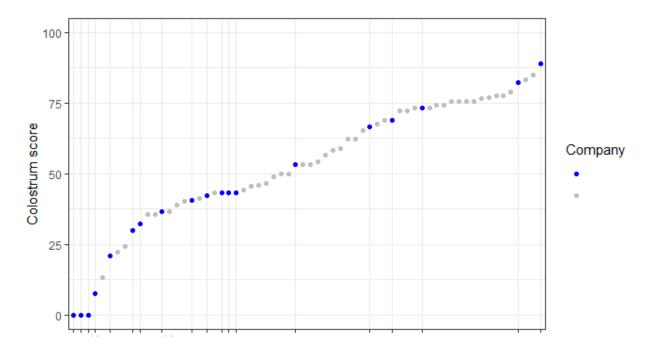
Vaccination Gestation

2022 Updated DataBase

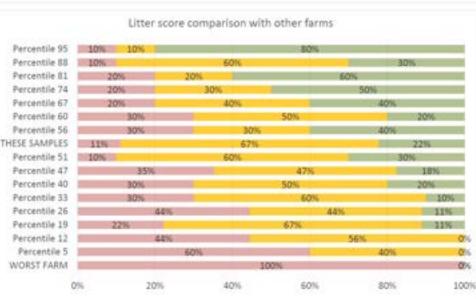



Robust and reliable algorithms

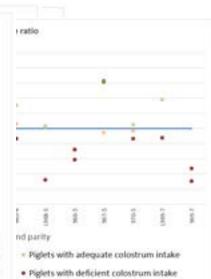
Benchmarking between farms of the same company



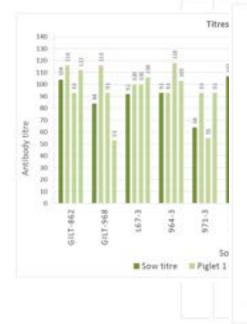
Benchmarking between farms of different companies

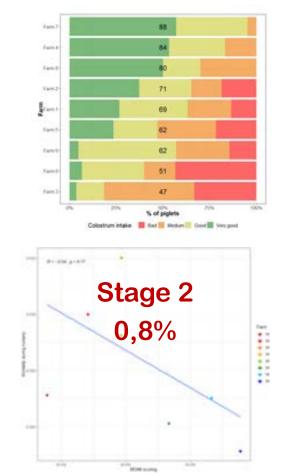


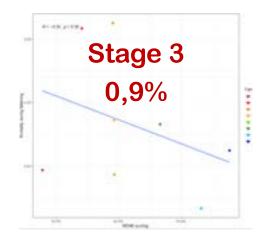
Company

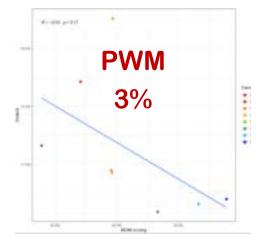

HIPRA

Report Output


- Correlation between sow and piglet titres
- Benchmarking graph based on MDA score
- Benchmarking graph based on Litter score




ILitters with poor colostrum intake 🖷 Litters with enough colostrum intake 🔳 Litters with good colostrum intake



HIPRA

Farm scoring corelates with mortality

HIPRA Case 1: Germany

Correlation between MDA TT and different techniques to measure colostrom intake

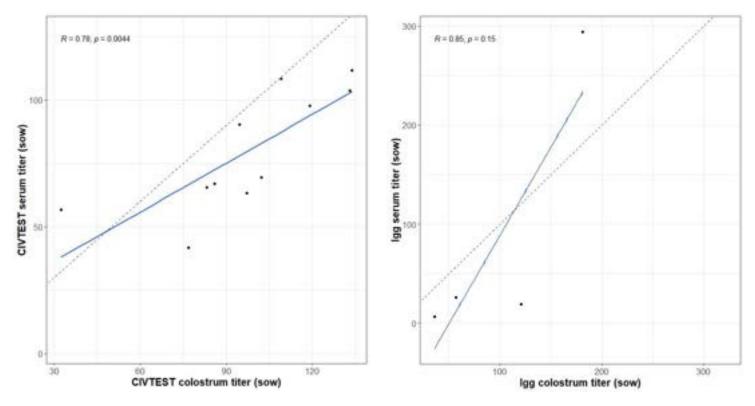
P. Könighoff¹, H.J. Sake¹, J. Miguel², D. Llopart², D. Angelats², C. Meistermann³, M. Ganter⁴, H. Schuberth⁵, K. Heenemann⁷, I.Hennig-Pauka⁶

¹HIPRA Deutschland; ²HIPRA HQ; ³Tierarztpraxis am Brettberg GbR; ⁴Clinic for Swine, University of Veterinary Hannover; ⁵Institute of Immunology, University of Veterinary Hannover; ⁶Field Station for Epidemiology, University of Hannover; ⁷Center for Infectious Diseases, Institute of Virology, Faculty of Veterinary Medicine Leipzig

Objective

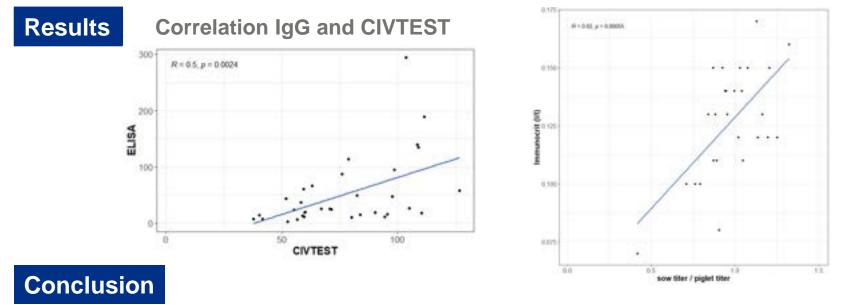
- MDA TT correlation with:
 - Inmunoglobulin IgG ELISA
 - Immunocrit

Material & Methods


- 11 sows & 33 piglets
- Colostrum at d0: SE titers & IgG
- Blood at d7: SE titers, IgG & Immunocrit

HIPPA Case 1: Germany

Results


SE serum & colostrum titers

IgG serum & colostrum titers

HIPRA Case 1: Germany

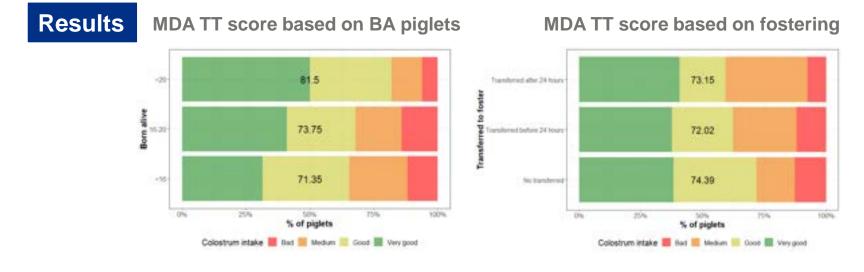
Immunocrit & sow/piglet titre ratio

- Correlation MDA TT and the other techniques
- Correlation SE titers in colostrum at d0 and serum from sows and piglets at d7

HIPRA Case 2: Netherlands

Litter size is a well-manageable (risk) factor for colostrum intake on Dutch sow farms

<u>J. Beek</u>¹, J. Miguel², C.Jurjens³, M. Solé², D. Llopart², M. Wilhelm¹ ¹HIPRA Benelux, ²HIPRA HQ, ³The Oosthof

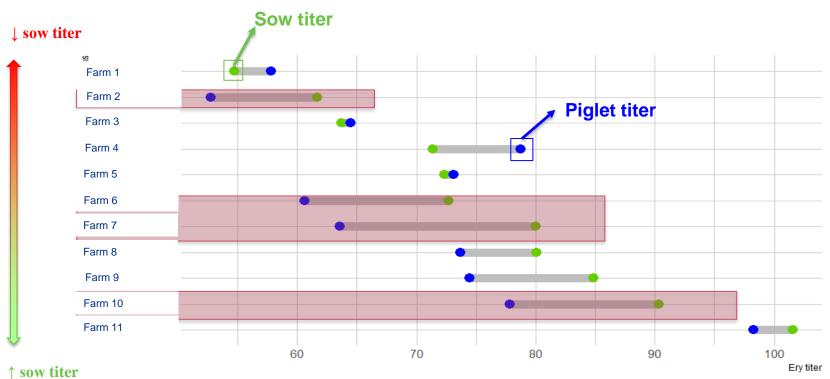

Objective

 Evaluate MDA score and its relation with litter size and fostering (yes/no, within or after 24h)

Material & Methods

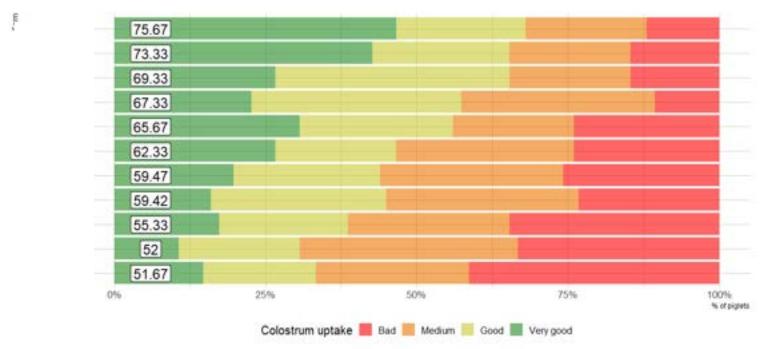
- 8 farms, 10-20 sows/farm, 3-6 piglets/sow
- Sampling at d7
- Parameters recorded: PBA, date and time of fostering

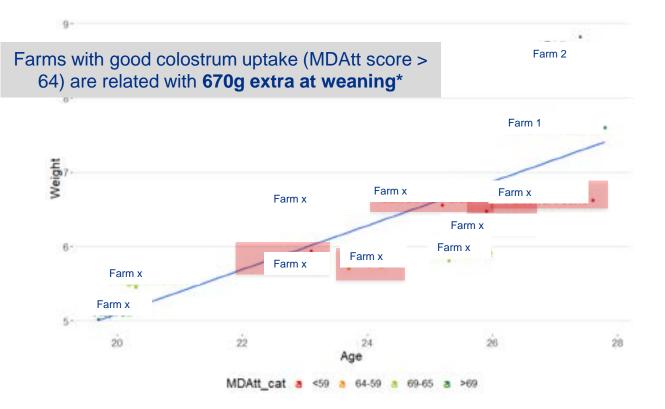
HIPPA Case 2: Netherlands



Conclusion

- Litter size as risk factor can be overcome with management
- Start fostering piglets after 24 hours


Sow and piglet titer


MDAtt benchmarking

Benchmarking of farms

HIPPA Case 3: Italy

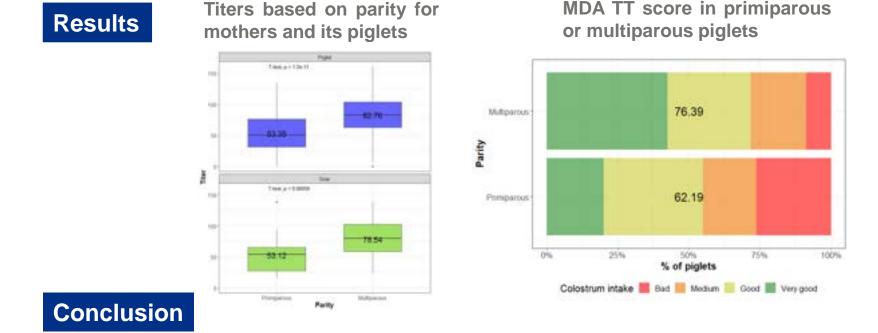
Weaning weight

*LRM with Weaning weight as outcome and Weaning age (P-val: 0,002) and MDAtt score (P-val: 0,131) as factors.

HIPPA Case 4: Netherlands

Lower maternal immunity transfer in primiparous versus multiparous litters can be explained by a combination of sow immunity status and suboptimal colostrum intake

<u>J. Beek</u>¹, J. Miguel², C.Jurjens³, M. Solé², D. Llopart², M. Wilhelm¹ ¹HIPRA Benelux, ²HIPRA HQ, ³The Oosthof


Objective

 Evaluate MDA score comparing primiparous vs multiparous

Material & Methods

- 8 farms
- 24 primiparous & 91 multiparous
- 421 piglets
- Sampling date at d7

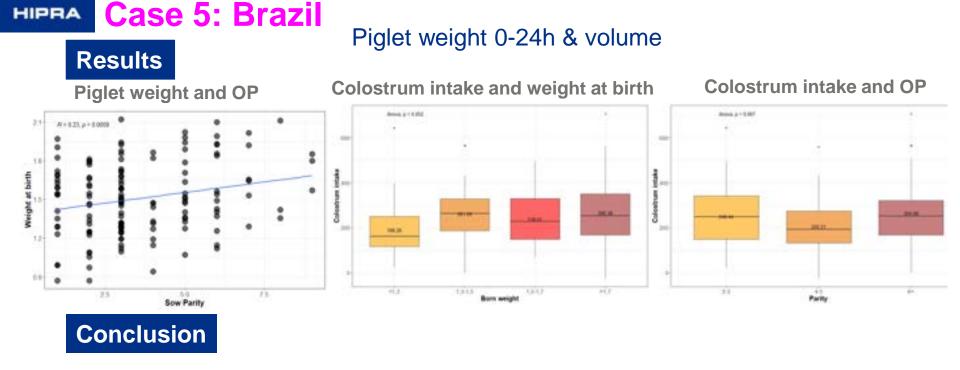
HIPRA Case 4: Netherlands

Lower titers and MDA score in primiparous → Extrapolated to other vaccines?

HIPPA Case 5: Brazil

Effect of sow parity order, piglet birth order and weight at birth, on the volume of colostrum intake and the quality of maternal antibody transference

Daniela Bruna^{1*}; Tatiana C. G. Dutra¹; Gabriel Peixoto¹; Gabriela Ibañez²; Joaquín Miguel²; Lorena Nodar²


¹HIPRA Saúde Animal Brasil, Porto Alegre, RS ² HIPRA HQ, Amer (Spain)

Objective

- Evaluate the effect of sow parity order, piglet birth order and weight, on the volume of colostrum intake and quality of MDA transfer
- Two methods:
 - Piglet weight 0-24h and MDA TT

Material & Methods

- 49 sows (P1-P8)
- 660 piglets: birth order, weight at 0 and 24h
- Volume of colostrum intake
 Devillers N *et al.* 2007.
- Birth order: First, middle and last
- Weight: low, medium and high

- Piglet weight linear increase with sow parity but not affected by birth order
- Piglets >1.7 kg → 266 g; Piglets < 1.3 kg → 189 g
- Piglets of sows OP≥6 had the highest colostrum intake

HIPRA Case 5: Brazil

Results

1000

Colostrum volume

SE titers & MDA TT

1.5

Correlation between MDA TT and colostrum volume

Madam

Bad

Correlation sow titer & parity

Sow Parity

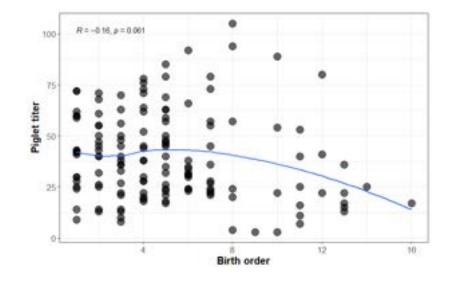
Correlation MDA score & parity

Good

MIDA

Very good

Good relation between Colostrum volume and MDA score


2.5

A+855,p+83e-11

• Sows OP≥6 had higher titers but the lowest transference

HIPRA Case 5: Brazil SE titers & MDA TT

Piglet titer based on birth order

Results

• Higher birth order was associated with lower titers

How to improve the MDA transfer test scoring

Re-check again

The Sow / Farrowing duration

Farrowing induction Nest-Building behaviour Farrowing attendance Inmune status Farm census structure Feeding Disease

The Piglet

Split suckling Supplementation with colostrum Energy supplements Disease

The environmental conditions Farrowing área

Once all the previous points have been reviewed and/or implemented, we encourage you to carry out a new MDA TT to see the improvements in the colostrum intake!

HIPRA

Building Immunity for a Healthier World